从地球型的行星直到整个可见宇宙_宇宙起源
其次,我们也许会怀疑,哈勃的发现似乎意味着所有的遥远天体均在远
① 布鲁克林,美国纽约市的一个区——译者 离我们而去。为什么是“我们”呢?要是我们对科学史有所了解的话,就一定知道哥白尼(Copernicus)证明了地球并不位于宇宙的中心。肯定地说,要是我们认为一切都正在远离我们而去,那么我们岂非又把自己恢复到了无垠宇宙之中心位置上了吗?但是,情况并非如此。膨胀的宇宙并不象源于空间中某一点的一场爆炸。并不存在宇宙向其中膨胀的任何固定的背景空间。宇宙包容了客观存在的全部空间!
设想空间有如一块弹性膜,而不是一块平的桌面。在这个具有韧性的空间上,物质之存在与运动造成了这块弹性膜的凹陷与弯曲。我们的字宙的弯曲空间,有如某个 4 维球上的 3 维表面。我们无法直观地看透这一点。设想我们的宇宙是一块只有 2 个空间维度的“平地”。这时,它就好像是某个不难描绘的 3 维球的表面。现在再设想这个 3 维球可以变大——如我们在下面描绘的膨胀气球。该气球的表面变大了,它是一个正在膨胀的 2 维宇宙。如果我们在它上面标出两个点,那么随着气球的膨胀,这两个点就会彼此朝后远退。现在在这个气球的整个表面作出许许多多的标记,并再次将它吹胀起来。这时,无论你停留在哪个标记上,你都将发现其他所有的标记仿佛都随着气球的膨胀而离你远去,当你观察其他标记的退行时,你将会看到某种哈勃膨胀律。这个例子告诉我们,该气球的表面代表了空间,但是气球膨胀的“中心”却根本不在那个表面上。在这个气球的表面上并不存在膨胀的中心,也不存在任何边缘。你不可能掉出宇宙的边缘:宇宙不是膨胀到任何东西里面去。它就是存在着的一切。
至此,我们可能会产生一个问题:我们目睹的这种宇宙膨胀,是否会无限地继续下去。如果我们朝空中扔一块石头,那么由于地球引力的拉曳,它将会落回地面。我们扔得越使劲,就是把越多的能量给了这块运动着的石头,这块石头在就会上升得越高。现在我们知道,如果以超过每秒 11 公里的速度发射一枚导弹,那么它就可以彻底摆脱地球重力的拉曳。这就是火箭的临界发射速度。空间科学家们称它为地球的“逃逸速度”。
类似的考虑适用于任何受重力拉曳而迟滞减速的爆发或膨胀着的物质系统。如果往外运动的能量超过往内的引力拉曳产生的能量,那么它就将超过其逃逸速度而一直保持膨胀。但是,如果重力在该系统各部分之间所施加的拉曳作用超过了往外运动的力量,那么膨胀中的物体最终将会重新回聚到一起,恰如前述的石块与地球之所为。正在膨胀的种种宇宙①亦皆如此(见图 2· 4)。在它们膨胀之初也有一个临界“发射”速度。如果它们膨胀得比这更快,那么宇宙中全部物质的引力拉曳将永远也不能制止这一膨胀,宇宙将保持永远膨胀下去。另一方面,如果“发射”速度小于该临界值,那么到头来膨胀将会停止并转为收缩,直至收缩到尺度为零而告终——与其开初时的状态全然相同。介乎上述两者之间,存在着一种我称之为“英国式折衷宇宙”的情况,它正好具有临界发射速度,即能使其保持永远膨胀下去的最小速度值。关于我们的宇宙,最不可思议的事情之一,就是它目前正以极其接近于这种临界状态的方式膨胀着。事实上,我们还无法肯定地说出我们的宇宙处于这种临界状态的哪一边。我们不知道应该对我们的宇宙作出何种长期预报。
事实上,宇宙学家们认为,我们如此接近于临界状态这一事实,乃是我
① “宇宙”原文用复数 universes,意谓理论上可能存在的、处于不同状态下的彼此互异的各种宇宙——译者 们这个宇宙的一项特殊性质,对于它,人们应该作出解释。这种情况是很难理解的,因为如果它不是精确地以临界“发射”速度肇始的话,那么随着宇宙的膨胀和成长,它就会离开该临界状态越来越远。这就成了一个很大的难题。我们的宇宙已经膨胀了大约 150 亿年,却依然如此接近于临界状态,以至于我们无法说出它究竟处于分水岭的哪一边。为了经历这么长的时间之后仍然如此接近于临界状态,宇宙的“发射”速度仿佛已经作过这样的“选择”:它与临界速度的差异不超过 1036(1 后面跟着 36 个 0)分之一。这是为什么呢?往后我行将会看到,人们对宇宙膨胀的最初时刻可能发生过什么事情所作的研究,为这种似乎极不可能的事态提供了某种可能的解释。但是在这里,我们将局限于了解为什么任何一个有人的宇宙在膨胀上百亿年之后,必须仍然非常接近于那种临界状态。
如果宇宙开始膨胀的速度远大于临界速度,那么重力就永远不能将局部的物质岛拉曳到一起,以形成星系和恒星。恒星的形成乃是宇宙演化中至关紧要的一步。恒星是聚集在一起的大堆物质,在其中心部分产生的压力大得足以启动自发的核反应。在恒星一生的历程中——我们的太阳正处在这一历程的中途,有一个漫长的稳定时期,在整个这一阶段中,恒星内部的氢燃烧而生成氦。但是在它们一生的最后阶段,恒星遇到了某种核能危机。它们经受某种快速变化的爆发阶段,在此期间氦燃烧而形成碳、氮、氧、硅、磷,以及一切在生物化学中起着至为重要的作用的其他元素。当恒星以超新星的形式爆发时,这些元素被洒入太空,并通过各种途径最终融入各种物质颗粒、行星、以及人体中去。恒星是种种复杂事物和生命赖以存在的一切化学元素的源泉。我们人体中的每一个碳原子核皆起源于恒星中。
这样,我们就看到,膨胀速度远大于临界状态的宇宙将永远不会产生恒星,从而也永远不能产生为造就像人类那样复杂的“活”物、或者以硅为基础的计算机所需的构件。类似地,如果一个宇宙以较临界速度慢得多的速度开始膨胀,那么在积累足够的时间以供恒星形成、爆发、并创造出生命物质的部件之前,它的膨胀就将逆转为收缩。这就再次留下了一个不能产生生命的宇宙。
于是,我们就得到一个令人惊异的结论:只有那些历经了数十上百亿年之后其膨胀依然十分接近临界状态的宇宙,才能产生出必要的“部件”,以供拼成足以被称为“观测者”的复杂结构。我们不应为发现自己的宇宙膨胀竟是如此接近于临界状态而惊奇。我们不能存在于任何其他种类的宇宙中(见图 2.5)。
现代宇宙学的主要目的是,利用在地球及其附近确立的物理学定律,或利用从这些局部成立的定律合乎逻辑地作出的推论,根据今天所得到的证据,详细地重现宇宙过去的历史。当然,我们在时间上回溯得越久远,宇宙环境就变得越极端,我们或许需要作出的外推与那些能在实验室中检验的物理学定律也就偏离得越远。事实上,这种情形往往会带来不少好处。如果一个人有独立的天文证据表明,我们重现的历史中有某一特定的部分正确无误,那么我们就可以通过考察这些假说对于天文观测会有什么后果,而用上述证据来检验有关物质在高密和高温下的行为的理论,或是检验存在着尚未探测到的物质新基本粒子之可能性。如果存在某种新型的基本粒子就会使宇宙早期阶段的膨胀大为改观,以至于今日不可能存在任何恒星和星系,那么我们就不必花费巨额资金用粒子加速器来做庞大的实验,即可径直排除存在 那种粒子之可能。
我们关于膨胀宇宙图景的发展、及对其既往史之重现进展非常缓慢。在 20 世纪 30 年代,比利时牧师兼物理学家乔治·勒梅特(George Lemaltre)在此事的起步阶段起了带头作用。他的“原始原子”理论乃是我们如今所说的“大爆炸”理论的鼻祖。 40 年代后期,一位移居美国的俄国人乔治·盖莫夫(George Gamov )与他的两位年轻研究生拉尔夫·阿尔弗( Ralph Alpher)和罗伯特·赫尔曼(Robert Herman)一起,又迈出了最重要的几步。他们开始认真考虑将已知的物理理论用于勾画宇宙早期阶段状况的可能性。他们认识到了关键之所在。如果宇宙肇始于遥远过去的某种既热且密的状态,那就应该留下某种从这个爆发式的开端洒落的辐射。更具体地说,他们认识到,过去应该存在着某个时候,其时宇宙的年龄仅为几分钟,它热得足以使每个地方都发生核反应。后来,更加详细得多的预言和观测结果应该说已经证实了这些重要的见地。
1948 年,阿尔弗和赫尔曼预言,从大爆炸散落的残余辐射由于宇宙膨胀而冷却,如今它所具有的温度约为绝对零度以上 5℃,或者说 5 开(绝对零度等于摄氏零下 273 度,即—273℃)。但是他们的预言并未引起人们的普遍重视,而被埋没在浩瀚的物理学文献之中。另外几位科学家考虑了一个热的膨胀宇宙之起源问题,但是他们谁也不知道阿尔弗和赫尔曼的论文。理由是很明白的。当时的通讯、交流无法与今天同日而语。在 40 年代和 50 年代,在大多数物理学家看来,再现宇宙早期史的细节并不是一种非常严肃的科学活动。但是多年以后,即 1965 年,美国新泽西州贝尔实验室的两位无线电工程师阿尔诺·彭齐亚斯(Arno Penzias)和罗伯特·威尔逊(Robert Wilson)却十分意外地发现了这种宇宙辐射场,当时他们正在为跟踪第一颗“回声号”(Echo)卫星而校准一具很灵敏的无线电天线。与此同时,在附近的普林斯顿大学,由罗伯特·迪克(Robert Dicke)领导的一个科学家小组已独立地重新发现了阿尔弗和赫尔曼早先作过的预言,并着手设计一台探测器以供搜索大爆炸的残留辐射。他们听说了贝尔实验室这台接收器中存在着无法阐明的噪声,并立即将它解释为源自大爆炸的残余辐射。它相当于在电磁波谱的微波部分波长为 7. 35 厘米的某种无线电波信号;如果假设它是热辐射,那么它所具有的能量就相应于 2. 7K 的温度——这与阿尔弗和赫尔曼富于灵感的估计非常接近。它被称为“宇宙微波背景辐射”。作为其预言与发现始末的一项追记,我们应当提及:1983 年,人们开始获悉前苏联无线电物理学家什茂诺夫(Shmaonov)也许早在 1957 年就已发现了这种辐射,并用俄文公布了这一事实。什茂诺失建造了一具对微波信号敏感的天线,并报道探测到了某种在天空中各个方向上均匀的信号,与之相当的辐射所具有的温度介乎 1K 和 7K 之间。当时无论是他本人或是其他任何人都不清楚这项发现的重要性。事实上,什茂诺夫直到 1983 年才闻知大爆炸的预言以及彭齐亚斯和威尔逊的发现,而这已经是后两人因 18 年前作出他们那项卓越的发现而荣获诺贝尔奖之后 5 年的事情了。
这项发现是人们开始认真地研究大爆炸模型的一种信号。渐渐地,人们对宇宙微波作了更多的观测,这些观测揭示了宇宙微波背景辐射的其他性质。这种辐射在所有的方向上都有相同的强度,精度至少高达千分之一。而且,人们在不同频率上测量了它的强度,开始揭示出其强度随频率变化的方式(即它的“谱”)具有纯热的特征。这样的辐射称为“黑体”辐射。不幸 的是,地球大气中的分子对于辐射的吸收和发射阻碍了天文学家去证实整个背景辐射谱确为热辐射谱。人们仍然怀疑,它或许是由宇宙开始膨胀之后很久发生的种种剧烈事件产生的,而并非产生于大约 150 亿年以前的膨胀之始。只有在地球大气外观测这种辐射才能消除这些疑虑,而这正是美国国家宇航局(NASA)的宇宙背景探测器(COBE)卫星于 1989 年开始从空间测量整个背景辐射谱的第一项巨大成就(见图 2.6)。那是人们在自然界中所曾见到的最完美的黑体谱,它非常引人注目地确认了宇宙过去曾比今天要热成千上万度①。因为只有在如此极端的条件下,宇宙中的辐射才有可能呈黑体形式而达到如此高的精度。
人们利用高空飞行的 U2 型飞机进行了另一项关键性的实验,以证实背景辐射并非近期起源于宇宙中邻近我们的部分。这些早先的间谍飞机机身极小、冀展却很大,这使它们成了非常适合于进行天文观测的稳定平台。这时,它们是朝上测天而不再是往下观地了!它们探测到天空各处的辐射强度具有某种系统的变化。倘若这种辐射起源于遥远的过去,那么出现这种变化便在意料之中。如果这种辐射形成了某种均匀膨胀的“海洋”——它生成于宇宙的早期,那么我们就将是在这海洋中航行。地球环绕太阳运动,太阳环绕银河系中心②运动,银河系又在本星系群中运动,如此等等;这一系列的运动意味着我们正沿着某个方向在背景辐射中穿行。当我们沿此方向观看时,辐射强度将显得最强,在与之相差 180°的方向上辐射强度则显得最弱;在这两者之间,辐射强度应随角度而呈某种富有特征的余弦变化(见图 2·8)。这很像在暴雨中奔跑。你的胸前湿得最厉害,背后则湿得最少。这里,在我们运动的方向上被扫过的是微波。正如预期的那样,观测揭示了某种完美的“余弦式”变化。
接着,几项不同的实验证实了这一发现——它又被称为“天空大余弦”(The Great Cosine in the Sky)。它肯定了这样一个事实:我们,以及包含我们寓居其中的本星系团在内的那个区域,都正相对于宇宙微波海而运动。因此,背景辐射不可能是局部区域产生的,因为不然的话,它就会和我们一块儿运动,这样我们就不会看到其强度与温度的余弦变化了。
我们穿越来自大爆炸的背景辐射而运动,并不是造成其强度随方向稍有变化的唯一可能的原因。倘若宇宙在不同的方向上正以稍稍不同的速率膨胀,那么在膨胀得较快的方向上,辐射就将较弱较冷。类似地,如果在某些方向上存在着某些物质特别集中或特别匮乏的区域,那么这也将使我们从这些方向上接收到的辐射强度发生变化。发射 COBE 卫星的动机就是搜索这些变化;1992 年,这些变化之发现成了世界各国报纸的头条新闻。
当我们考察来自天空中不同方向的背景辐射强度时,我们就获悉了有关宇宙结构的大量引人注目的事情。我们发现,它正在所有的方向上以相同的速率膨胀,其精度优于千分之一。我们说这种膨胀近似地是“各向同性的” ——也就是说,在每个方向上都相同。如果有人从某个“宇宙博览馆”中随机地挑选有可能存在的宇宙,那就会有无数个在某些方向上远比其他方向膨
① “成千上万度”,原文 hundreds of thousands of degrees,仅具象征意义,故不宜直译为“数十万度”之类的具体数量——译者
② 原文为 Milkyway,直译作“银河”或意译作“银河系”均不确,故据实际情况译为“银河系中心”——译者 胀得更快的宇宙品种,或者是以很高的速度旋转、或者甚至是在某些方向上收缩而同时又在其他方向上膨胀着的宇宙变种。我们的宇宙确实很特殊。它似乎处于某种安排得极为妥善的状态之下:在所有的方向上膨胀都以相同的速度进行下去,其精度非常之高。这就好像你回到家里发现所有孩子的卧室都极其整洁——一种非常不容易遇到的事情。这一定是施加了某种外界的影响。同样地,对于宇宙引人注目的各向同性而言,也必定存在着某种解释。
宇宙学家们长期以来都把宇宙膨胀之各向同性视为必须予以阐释的一大疑谜。为此所采用的某些方法可以说明在该领域内人们的思维方式,以及为阐明这种各向同性而寻求的解释的类型。最后,寻找这些解释又会把我们带回到宇宙本身的起源问题上去。
宇宙学家们在寻找这些解释时,构造了各种可能的宇宙史,它们能够说明已知的事实,并为尚未说明的性质提供解说。利用某一种假设,能对尚未说明的性质解释得越多,工作就做得越好。宇宙学家们最感兴趣的是这样的假设:它既能解释有关宇宙的令人困惑的特征,又能预言某些尚未探测到的宇宙新属性。搜索这种预期的特征,就可以凭藉观测来检验原先的假设,这恰如利用实验室中的实验来检验其他科学理论的预言。遗憾的是,我们并不能保证自己的仪器灵敏得足以进行我们想要的一切观测。由于这种现实的局限性,对于许多理论作出的预言,我们尚无法用观测来检验。确实,正是此类预言往往支配着未来将会发展何种新型的天文台或人造卫星。
可以采取的第一条途径是说宇宙就是各向同性地开始膨胀的。宇宙目前的状态只不过是其特殊的起始条件的某种反映。事情现在所以如此,乃是因为当初如彼。实际上,这解决不了什么问题。它什么也没有解释,也没有告诉我们任何新东西。当然,它也可能是对的。倘若果真如此,我们也许就可以指望,存在着某种更深刻的“原理”,它使宇宙必然(或者至少是以压倒优势的可能性)肇始于某种各向同性膨胀的状态之中。这一原理也许在较为局部的范围内还有着其他应用,据此便可以揭示其自身之存在。其令人不悦之处则在于,它把解释宇宙现状的重担完全置于未知的(而且也许是不可知的)宇宙起始状态之上。
第二条途径是将事物的现状考虑为在宇宙中进行的各种物理过程的结果。这样的话,也许无论宇宙的初始状态是多么地不规则,在历经数十亿、上百亿年之后,所有的不规则性均已刷尽,留下的则是某种各向同性的膨胀。这种做法有一个优点,即激励人们拟定某种确切的研究计划,以期发现它是否可能真的正确无误。是否存在这样的物理过程:它能够抹平膨胀中的非均匀性?“抹平”的过程历时多久?时至今日,它们能否摆脱所有的不规则性,抑或只是消除了其中的一小部分?不仅如此,这种做法还有一个令人满意的特点:它使我们对宇宙现状作出的假设尽可能少依赖于我们对未知的宇宙初始状态之了解。我们很乐于能够这么说:无论宇宙是如何开端的,在它的早期历史上必不可免地会发生一些物理过程,后者确保了宇宙在膨胀 150 亿年之后,看起来差不多就应该像它今天的那种模样。
这第二种哲学虽然听起来极富吸引力,但也有一个弱点。如果我们真能证明宇宙之现状确实与其起始时的条件无关,那么我们现在观测宇宙的结构也就不能告诉我们有关那些起始条件的任何情况了。因为这样的话,宇宙的现状便可与任何起始状态相容。但是,与此相反,如果宇宙目前的结构——其膨胀之各向同性、或是由星系成团性展示的结构图案——部分地反映了宇 宙开初的方式,那么就存在着这样的可能性:通过我们今天对于宇宙的观测,或许便能断定有关宇宙初始状态的某些情况了。
奇点天文网 dprenvip.com
本文由奇点天文作者上传并发布,奇点天文仅提供文章投稿展示,文章仅代表作者个人观点,不代表奇点天文立场。