沸腾的真空_宇宙时间奥秘
如我们已经看到的,海森伯测不准原理影响到时间的测量。在一个给定的时间间隔之内,我们所能够测量的能量的精度有一个限制。精确测定一个原子处在一个特定量子态时的能量,是要以处于这个态上的时间之相当大的不确定性作为代价。
下一节中我们会看到,一些宇宙学家相信,可以从这种不确定性中生出一个完整的宇宙。不确定性关系使得能量不能无中生有这个观念可以被违反。在经典物理学中,能量既不能创生也不能消灭,而是严格守恒的,只是从一种形式转换到另一种形式。例如,汽油中的化学能转变为热和汽车的运动。对于所有的初始能量,可以按这种方式作出一份能量平衡表。但是,如果时间间隔取得过小,能量守恒就会由于海森伯不确定性原理而受到破坏。
海森伯原理中的能量和时间的关系表明,所考虑的时间间隔越短,则能量的不确定性就越大。这使得能量守恒在非常短的时间间隔内不再成立:由于随机的量子涨落,能量可以从虚无中得到。这样的事件甚至可以在真空中发生,而按照经典的看法,真空是一无所有的。这样,量子论就给出了一个完全不同的真空概念。由于不确定性原理,真空实际上沸腾着活力。
现代的真空概念主要是狄拉克建立起来的。他认识到,如果要正确地描述物质吸收和发射光子的方式,麦克斯韦电磁场就必须用量子术语来描述。他推广了麦克斯韦的数学模式,把电磁场描述为数目巨大的振子的集合,每一个振子的能级都是量子化的,像原子中电子的能级那样。但是现在,由于不确定性原理,每一个振子的能量不能低于一个固定的最小值——即零点能,这就使得即使是真空也总是沸腾着活力:在空间所有各处,真空场的能量永无终止地在发生涨落。足够大的能量涨落可以使得粒子—反粒子对——例如电子—正电子对——在瞬息间生成,而且能量涨落越大,粒子对生成得就越迅速。
这些真空量子场涨落具有相当重要的物理意义。例如,光子不断地产生和湮灭,可以触发吸收了能量的原子,使其自发地发出像光,即辐射。事实上,真空的涨落在某种程度上使虚无飘渺的以太重新受到注意,以太当时是被爱因斯坦当做一个多余的累赘,在 1905 年丢弃了。如牛津大学的史密斯(ChristopherLlewellyn Smith)所说:“今天,我们对
于真空一点都不懂。”
狄拉克把电磁场量子化以后解决了一些问题,然而却引起了更多的问题。简言之,困难的出现是由于场所能够携带的能量没有限制,这就导致理论中常常出现无穷大。正像广义相对论中奇点的情况一样,这种失控的行为在数学上是很讨厌的,并且它暗示着理论框架中什么地方有了问题。但是,在量子场论中,一些处理问题单刀直入的理论家,例如戴森( Freeman Dyson)、费曼、史温格(Julian Schwinger)和伴中(Sin—itiro Tomonaga),发现了一种称为“重整化”的办法,可以用来克服这种发散困难。这种办法使得无穷大与另外的无穷大相抵消,因而被巧妙地吸收掉了。结果的形式给出了富于意义并且常常是非常成功的预言。但是,围绕重整化方法合理性的争论一直在继续;狄拉克本人就认为,无穷大问题是理论本身确实具有基本缺陷的征兆。甚至霍金都承认,重整化“在数学上是值得怀疑的”。
量子场论的主要缺点之一,是它不能处理引力。这时候产生的无穷大,即使借助于重整化技巧也无法消除。然而,宇宙学家们普遍认为,一个成功的量子引力理论,会解决我们在第三章中遇到的广义相对论的奇点问题。最近,出现了一种解决这个困难的新办法,即所谓弦理论。可以把弦理论看作是某种“高维”的场论,它的最小单元不再被看成是点,而是某种具有有限尺度的东西,即开放的或闭合的弦。这一理论的主要倡导者中间,有伦敦大学玛丽皇后学院的格林( Michael Green),和美国加州理工学院的施瓦兹(John Schwartz)。自从弦理论一问世,很多人都对它抱有乐观的希望,认为它将能够处理并统一包括引力在内的粒子间的基本相互作用,不会出现棘手的无法控制的无穷大。正因为如此,一些持高度乐观态度的物理学家,其中包括霍金,认为随着弦理论的出现,理论物理学的终点已经在望。
虽然从数学上讲,弦理论具有无可否认的美学上的吸引力,但在科学上还没有使人非相信不可的理由,能把它作为一种万能的灵丹妙药。用巴罗的话来说,“还没有实验上的事实证明它正确与否。在今后一些年里 一定会有这样的事实出现。只有在那以后我们才会知道,这一独特的处方是一种包罗万象的理论,还是一文不值。”尽管弦理论自己宣称可以解决许多问题,但是由于它的时间对称结构,它看来不大可能对时间的本质给出任何新的见解,特别是关于时间的方向,或者是与此有关的、然而常常被忽略的测量问题。
奇点天文dprenvip.com
本文由奇点天文作者上传并发布,奇点天文仅提供文章投稿展示,文章仅代表作者个人观点,不代表奇点天文立场。